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— = tan 2uLI/hI.
kC,Z

(9)

For a homogeneous resonator constructed
from a single material, the capacitance C,
changes linearly with temperature while Z
remains constant.

[’+%%=’+% ’10)
The subscripts 1 and 2 designate the initial
and final temperatures, respectively. The solu-
tion to (10) occurs when

AX
— aAT.

xl –
(11)

Consider the case of a composite resona-
tor constructed from two different materials,
say a brass outer conductor and a low-expan-
sion inner conductor. After a change in tem-
perature, AT, the resonance condition is de-
scribed by

tan [27r~ ~ (1 + a(a) A2’)]

= Y,,; : ; (12)

where Cl and C, are given by (4) and (5), re-
spectively, and ZI and Zz are given by (6) and
(7). This equation cannot be solved as simply
as (10), due to the complex temperature de-
pendence of C, and the presence of the im-
pedance term on the right-hand side of the
equation.

This equation was solved, using Newton’s
approximation method, on a digital computer
for two conditions. These conditions are for a
b/a ratio of 3.6 to 1 with a =0.9 cm, and a b/a
ratio of 9.0 to 1 with a = 0.36 cm. The results
of these solutions are plotted in Figs. 4–7 for
a brass outer conductor and various expan-
sion inner conductors for different initial
loading factors. It is evident from the curves
that the resonator stability deteriorates
rapidly for even slight loading of a resonator
with a very low-expansion center conductor.
For higher-expansion center conductors, the
effect is decreased. For an inner-conductor
expansion of 2 parts in I@ equal to the brass
outer conductor, the stability is equal to the
material expansion and independent of the
loading as it should be.

EXAMPLE

A composite coaxial resonator was con-
structed with a low-expansion center conduc-
tor and a brass outer conductor. The diameter
ratio was 3.6 to 1 and the radius of the inner
conductor was 0.9 cm. At room temperature,
resonance occurred at 1.385 GHz compared
to an unloaded length corresponding to 1.75
GHz. This is a loading factor [Jh of 0.198.
Between 25°C and 70”C, the inner conductor
had a measured expansion of about 5 parts in
107. From Fig. 5, this corresponds to a sta-
bility Al/k of 2.2 parts in 108. The measured
stability of the resonator over this range is
3.8 parts in 10’. This is good correlation with
the small discrepancy possibly due to mea-
surement inaccuracy or additional external
influences on the resonator.
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Isolation of Lossy Transmission

Line Hybrid Circuits

I. INTRODUCTION

With the advent of integrated microwave

circuit techniques, use of Iossy transmission

lines to achieve miniaturization can seriously

affect circuit performance. A frequently used

performance characteristic of hybrid circuits

is the isolation between conjugate ports. Such
isolation is normally limited to maximum
values of 40 dB to 50 dB due to incidental
mismatch of terminations and capabilities of
test equipment. When lossy transmission lines
are employed to realize the hybrid circuits, an
additional constraint is placed upon the peak
isolation that can be achieved. In this cor-
respondence, the theoretical isolations of 10SSY
hybrids will be determined at their design cen-
ter frequencies. Two different hybrid circuits
will be considered: the square hybrid and the
“rat race” hybrid ring. The preferred method
of analysis of symmetrical four-port networks
will be used herein.1

To analyze the lossy hybrids, one must use
the complex propagation constant y, where
~ = ~ +j~. “fhe attenuation per unit length in

nepers per unit length is ~, while B is the
phase shift per unit length in radians per unit
length. Three trigonometric identities will be
used:2.3

()tanh ~ =
cosh (vL) — 1

(1)
sinh (YL)

sinh (7L) = sinh (aL +j~~) = sinh aL cos BL

+j cosh aL sin BL (2)

cosh (7L) = cosh (CIL +J3L) = cosh aL COS BL

+j sinh CIL sin BL. (3)

For a quarter-wave transmission line of small
dissipation, L= A/4, sinh CILELYL, cosh aL~l,
sin PLE1, and cos BLgO:

Then

sinh (YL) % j I
cosh (7L) s j d. ~

()

(4)

tanh ~ =cA+jt
J

For a three-quarter-wave transmission line of
small dissipation, 3L = 3h/4, sinh 3aL~3aL,
cosh 3aL~l, sin 3BL= – 1, and cos 3BL=0.
Then

sinh (37L) ~ — j’
)

cosh (37L) s% — j3aL ‘

371.

() 1“

(5)

tanh — s3aL–j
2

II. SQUARE HYBRID

The square hybrid (see Fig. 1) uses four
quarter-wave transmission lines. The ABCD
matrix for this hybrid can be found for both
the even (M+ +) and the odd (M+ –)
modes:
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Fig. 1. Square hybrid.

x [
cosh (72L) ~z sinh (YZL) ]

(6)

where

w= propagation constant per unit length
of transmission lines connecting ports
1 and 2, and ports 4 and 3, --

y+t are admittances of shunt stubs for
even and odd modes.

For the even mode: (shunt stubs are open-
circuited)

Y ()++ = Y, tanh ~ (7)

where

m = propagation constant per unit length
of transmission lines connecting ports
1 and 4, and ports 2 and 3.

Letting Y,= 1, and substituting (4) into (7)

Y++ = LY,L + j.

For the odd mode: (shunt stubs
circuited)

Y,
Y+- = —— .

()tanh @
2

(8)

are short-

(9)

Letting Y,= 1 and substituting (4) into (9)

1
Y+- = —

CWL — j

CIIL + j = (a,L)2 + ~ . (10)

For small dissipation, (~1 L)2<<1 then

Y+. GCiIL -j. (11)

Substituting (4), (8), and (11) into (6), it can
be shown that

M~h = j
[

1

(IIL ~ j
RI ‘[: i]

1 0
1‘[a,LAj 1 “

Performing the matrix multiplications in (12)
and disregarding all second-order terms in-
volving CUL and c&:
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Using (19), (26), and (28), theoretical hybrid
isolations have been calculated for Qs of 10,
100, 1000, and m. These numerical results
are tabulated below:

Q
I

L I (Sqiare

1

( “Ra~Race”
Hybrid) Hybrid Ring)

now,
10 0.0785 23.3dB 33.7dB

100 0.00785 40.8 dB 51.4dB
—.

1000 0,000785 60.5 dB 71.ldB

(14)

(15)
‘x 10 I dBl dB

(Note: m =m =a is assumed for the square hybrid.)

For the square hybrid when w = m = a

for the second shunt stub

[
2 + 9.66czL

I = 20 Ioglo
2.414aL 1

0.83[1s2olog10 ~ .

Letting Al equal the vector amplitude of the
signal emerging from port 4,

37L

()
Y,+. = Y, tanh —

2“
(21)

(5) into

C22)

(23)

(5) into

(29)A, = :[r++ – r+-]. (16)

Substituting (16) into (15) and discarding all
second-order terms involving WL and a2L, it
can be shown that

Letting Y,= 1/~2 and substituting
(21),

YZ++ = 3.L – j

Upon comparing (26) and (29), it can be seen
that as d approaches zero, the isolation of
the “rat race” hybrid ring will be 10.6 dB
greater than the isolation of the square hybrid
for the same aL in both hybrids. Such a per-
formance advantage is not unexpected since
the bandwidth of the square hybrid is less
than that of the “rat race” hybrid ring.1 Iso-
lation in hybrid circuits is similar to peak
rejection in a band-reject filter. As filter
bandwidths become wider, the same amount
of incidental dissipation (i.e., same resonator
unloaded Q) results in higher peak rejection.
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A4= –j
[

alL + <~ CX2L 12+4a1L+4@a2L “
(17)

now

Y2+- =

tanh~~) “
2

Now

I = 20 log,o + (18)
Letting YO= l/@ and substituting
(23)where I= isolation is dB

Y’+-=+(ZH
1

-(

3aL + j

)= @ (3aL)2 + 1 “
(24)

[
2 + 4.IL + 4w@ CY2L

I = 20 loglo
aIL + @azL 1

[
2

Q 20 loglo 1 (19)
CML + @2 WL “

For small dissipation,

111. “RAT RACE” HYBRID RING (3aL)2 <<1 ;

The “rat race” hybrid ring (see Fig. 2)
uses three quarter-wave (i.e., x/4) transmis-
sion lines and one three-quarter-wave (i.e.,
:x) transmission line. The same method of
analysis previously used for the lossy square
hybrid is directly applicable.

then

_ 3aL “

‘2+-= 42+$”
(25)

The ABCD matrix for the “rat race” hybrid
ring can be evaluated using (20), (22), and
(25) for Y,+t and Y,+~. Upon determining the
vector amplitude of the signal emerging from
port 3 and discarding all second-order terms
involving aL, itcan be shown that

A Stepped Mode Transducer Using

Homogeneous Waveguides

Abstracf—A rectangular to cylindrical
waveguide transducer is described which couples
the dominant rectangular (T.E,,) and dominant
cylindrical (TEll”) modes. The maximum volt-
age reflection coefficient remains less than
0.025 over the design bandwidth. Synunetry
considerations substantiated by moding tests
show the transducer to be higher-order mode
free. Previous work is reviewed, the design
method discussed, and experimental data shown.

Broadband rectangular to dominant mode
cylindrical waveguide transducers are com-
mon to several devices in the microwave re-
gion, most notable of which is perhaps the
precision rotary vane attenuator. Frequently
such transducers are realized by construction
of a taper section several wavelengths in size.
As a result of a recent study of the dominant

I = 20 loglo
[

4 + 12w@aL

@ aL 1
2.83[1Q20 Ioglo --&- . (26)

IV. NUMERICAL RESULTS

The unloaded Q of a resonant length of
loss.y transmission line can be related con-
veniently to the attenuation per unit length
when the dissipation is small:4o3

(27)
Fig. 2 “Rat race” hybrid ring.

where h = wavelength. Rearranging terms and
letting L= x/4, it can be shown that

Since the first shunt stub of the bigected
network is an eighth-wavelength long, (7),

(8), (9), (10), and (11) are applicable when
Yo= l/~~ and a, =CY.Then

0.785
~L.~=—.

4Q Q
(28) Manuscript re.cewed June 28, 1966. This paper pre-
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ministration.
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